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Abstract. Alzheimer’s disease (AD) is characterized by the progressive accumulation of neuro-
fibrillary tangles associated with amyloid plaques. We used 80 resting-state functional magnetic
resonance imaging and 80 T1 images acquired using MP-RAGE (magnetization-prepared rapid
acquisition gradient echo) from Alzheimer’s Disease Neuroimaging Initiative data to detect atro-
phy changes and functional connectivity patterns of the default mode networks (DMNs). The
study subjects were classified into four groups (each with n ¼ 20) based on their Mini-Mental
State Examination (MMSE) score as follows: cognitively normal (CN), early mild cognitive
impairment, late mild cognitive impairment, and AD. The resting-state functional connectivity
of the DMNwas examined between the groups using the CONN functional connectivity toolbox.
Loss of gray matter in AD was observed. Atrophy measured by the volume of selected subcort-
ical regions, using the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software
Library’s Integrated Registration and Segmentation Tool (FIRST), revealed significant volume
loss in AD when compared to CN (p < 0.05). DMNs were selected to assess functional con-
nectivity. The negative connectivity of DMN increased in AD group compared to controls.
Graph theory parameters, such as global and local efficiency, betweenness centrality, average
path length, and cluster coefficient, were computed. Relatively higher correlation between
MMSE and functional metrics (r ¼ 0.364, p ¼ 0.001) was observed as compared to atrophy
measures (r ¼ 0.303, p ¼ 0.006). In addition, the receiver operating characteristic analysis
showed large area under the curve (AZ) for functional parameters (AZ > 0.9), compared to mor-
phometric changes (AZ < 0.8). In summary, it is observed that the functional connectivity mea-
sures may serve a better predictor in comparison to structural atrophy changes. We postulate that
functional connectivity measures have the potential to evolve as a marker for the early detection
of AD. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.7.1
.016002]
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1 Introduction

Alzheimer’s disease (AD) accounts for more than 65% of dementia cases, characterized by
progressive cognitive deficits, which include apraxia, differential impairment of recall memory,
and language disturbances accompanied with other symptoms, such as psychosis, agitation,
hallucinations, delusions, anxiety, and depression.1–5 The progression of AD is due to several fac-
tors: severe tau-deposition and augmentation by oxidative damage, cholinergic neuronal death,
beta-amyloid deposition, and microglial inflammation were found to be the cause of AD.6–9

The early stages of AD are determined by pathology in subjects with mild cognitive impairment
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(MCI), including the neurofibrillary tangles, plaques, and loss of basal forebrain cholinergic
neurons.10 According to studies based on the AD pathogenesis, the accumulation of Aβ plaques
in the brain is followed by the neurofibrillary tangles formation containing the tau protein, which
results in the imbalance of Aβ plaque deposition.11 The most commonly affected brain areas
include the temporal lobe cortex and hippocampal regions with neurofibrillary tangles.12 Gray
matter loss in subjects with the cognitive decline has been found to be specific in cortical areas,
such as the parietal, hippocampal, precuneus, and medial temporal lobes, resulting in high medial
temporal atrophy.13 Recent studies reveal that evaluation of cerebrospinal fluid biomarkers using
positron-emission tomography (PET) imaging has the ability to characterize the level of amyloid
burden and the degree of neurodegenerative changes in AD patients.14

Brain morphometry using magnetic resonance imaging (MRI) is a well-known modality
for the diagnosis and prognosis of AD.15 MRI of the brain can help effective visualization
of the medial temporal lobe structures that are involved in MCI.16 Atrophy of hippocampus has
been reported to be the most significant structural predictor involved in the conversion of MCI to
AD.17 The most common structural MRI markers were the hippocampal and medial temporal
atrophies, which are known to be involved in the progression of AD.18

Functional magnetic resonance imaging (fMRI) has made significant progress toward brain
mapping and neural activity studies.19 The fMRI records the blood-oxygen-level-dependent
(BOLD) signal changes with good spatial resolution to map the neuronal activity in the whole
brain.20 Resting-state functional magnetic resonance imaging (rs-fMRI) measures the low-
frequency fluctuations (LFFs) (<0.1 Hz) to map spontaneous or intrinsic baseline neural activity
as spatially consistent patterns.21 The functional resting-state networks (RSNs) were also acquired
at these LFFs with the BOLD contrast. These LFFs are useful in interpreting the functional brain
imaging outcome by measuring the regional neural activity in the RSNs.22 In AD patients,
the fMRI studies of episodic memory show direct relevance to the early pathological changes
in medial temporal and prefrontal cortices. Thus, in asymptomatic AD, fMRI serves as a useful
tool for detecting the susceptible brain activity regions.23 The rs-fMRI serves as a promising tool to
understand and detect the functional connectivity of the brain by measuring the spontaneous
LFFs in BOLD signals, which are temporally correlated across functionally related brain areas.
This has led to the identification of various functionally correlated brain networks during the
resting state.24

Resting-state functional connectivity associated with major disconnections or alterations
between several brain regions has been reported in various pathological cases, such as AD, multi-
ple sclerosis, depression, and attention deficit hyperactivity disorder.25 It has been suggested that
the neuronal communications between the brain regions are associated with increased functional
connectivity, due to the existence of neuroanatomical connections that prove that functionally
linked brain networks reflect the underlying structural connectivity in various regions of the
brain.26 The anterior and posterior medial, lateral parietal cortex regions show intrinsic activity
during rest as consistent pattern, known as default mode networks (DMNs). This type of func-
tional network was found to be robust among cognitive states.27 The rs-fMRI is also useful to
study the relationship between brain activity and behavioral aspects. The graph-theory-based
network analysis of rs-fMRI images has proved to be a potential tool to assess physiological
mechanism of brain function.28 The graph-theory-based network analysis computes
several parameters to evaluate intrinsic or spontaneous brain connectivity network during neural
disruptions and recovery.29–32

MRI studies have independently reported atrophy and functional connectivity in the regions
associated with DMNs and cognitive impairment in early mild cognitive impairment (EMCI),
late mild cognitive impairment (LMCI), and AD. However, these studies lack demonstration of
connectivity measures, such as degree centrality, clustering coefficients to provide better quan-
tification of brain networks,33 and disease conditions during cognitive impairment and AD.34

Demonstration of the utility of a functional connectivity marker as a predicting factor is still
lacking. In this study, an attempt is made to evaluate whether any correlation exists between
atrophy, functional connectivity measures, and a commonly used clinical scoring method, viz.,
the Mini-Mental State Examination (MMSE) score. We hypothesize hypoconnectivity or hyper-
connectivity of the functional associations in the DMNs and the metrics derived based on graph
theory could serve as a predictive imaging marker in staging the disease.
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2 Subjects and Methods

2.1 Subjects

The data used in this study were obtained from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was led by Michael W. Weiner and was launched
in the year 2003 with the aim to measure the progression of MCI and to differentiate from AD.
ADNI uses imaging modalities, such as MRI, diffusion tensor imaging, PET, and other serum and
cerebrospinal fluid biomarkers, along with clinical and neuropsychological assessment. The dem-
ographic data, such as age, gender, and occupation, are available for each patient. In this study, the
cases were selected randomly from all the four groups [20 from each viz., cognitive normal (CN),
EMCI, LMCI, and AD] based on the baseline screening from the ADNI website. Further, the
demographic details, such as age, sex, MMSE, and clinical dementia rating (CDR) scores, were
also recorded. Later, the neurophyschological assessment via MMSE score and CDR score were
utilized to find the association with imaging parameters. Both structural [magnetization-prepared
rapid acquisition gradient echo (MPRAGE)–T1] and rs-fMRIs of the 80 subjects of the four differ-
ent study groups, CN, EMCI, LMCI, and AD group patients, are analyzed (Table 1).

3 Methods

3.1 Image Acquisition Parameters

The MPRAGE sequence was used to acquire T1-weighted three-dimensional volume images for
all the subjects. For T1 images, the acquisition parameters are as follows: repetition time (TR)—
2300 ms, echo time (TE)—3.1 ms, flip angle (FA)—9 deg, field of view (FOV)—93.75 mm2,
(number of phase and frequency encoding (acquisition matrix)—256 × 240) and the slice thick-
ness—1.2 mm. For the functional images, echo-planar imaging sequence was used with the
following parameters: TR—3000 ms, TE—30 ms, FA—80 deg, number of slices—168, and
the slice thickness—3 mm.

3.2 Structural Image Processing

The T1-weighted structural images were preprocessed (conversion of DICOM format to com-
pressed four-dimensional NIfTI format) and then skull-stripped using brain extraction tool.
The skull-stripped images were then processed with FIRST. In this step, the extracted regions
(which generates *.nii file) are superimposed on the whole brain image of each subject to deter-
mine the accuracy of the segmentation and its anatomical position. The volumes of left and right
regions of hippocampus, thalamus, amygdala, putamen, pallidum, caudate, and accumbens were
measured and the represented in terms of volume (cubic millimeter).

3.3 Functional Image Processing

The functional images were processed using CONN toolbox, version 17.f (Ref. 35, RRID:
SCR_009550) and statistical parametric mapping, version 8.36 The standard preprocessing

Table 1 Age and MMSE of study groups.

Groups Gender
Age (years)

range
Age

(mean ± SD)
MMSE

(mean� SD) P-value (age)

CN (N ¼ 20) 8 M, 12 F 65 to 95 76.85� 7.46 28.75� 1.34 —

EMCI (N ¼ 20) 8 M, 12 F 56 to 82 70.90� 6.56 27.80� 1.83 CN versus EMCI: 0.010

LMCI (N ¼ 20) 12 M, 8 F 58 to 87 70.50� 7.19 27.95� 1.32 EMCI versus LMCI: 0.855

AD (N ¼ 20) 9 M, 11 F 56 to 87 73.40� 7.57 22.60� 2.46 LMCI versus AD: 0.221
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pipeline includes realignment and slice timing correction. These realigned functional images
were coregistered with the high-resolution structural T1 image. The coregistered functional
images were spatially normalized to Montreal Neurological Institute standard brain template
and smoothened with 8 mm kernel. The functional data were denoised using CONN’s
default denoising method, which uses component-based noise reduction method—a combi-
nation of motion regression and scrubbing regressors. Later, using of bivariate correlation as
a standard measure for functional connectivity analyses, and from the list of seeds/sources,
the DMNs having 12 regions of interest (ROIs) were selected to perform the connectivity
analyses. This performs the first-level analyses resulting in ROI-to-ROI connectivity matri-
ces for each subject and for each condition. The graph theory measures of global efficiency,
local efficiency, degree, cost, clustering coefficient, and average path length were also
evaluated.

For functional assessments, regions associated with DMNs were selected. The default mode
network consists of the precuneus, posterior cingulate cortex, the medial prefrontal cortex,
inferior parietal lobe, and lateral and medial temporal cortex. Using bivariate correlation as
a standard measure, functional connectivity between different ROIs was computed. From the
list of seeds/sources, the DMNs, six ROIs viz., left and right of middle frontal gyrus, angular
gyrus, posterior cingulate cortex, lateral parietal lobe, and parahippocampal and hippocampal
regions were selected for connectivity analysis. The first-level analyses (slice time correction,
motion correction, normalizing denoising, and smoothing) were performed between the above-
mentioned ROI-to-ROI connectivity matrices (2 × 6 × 6) for controls and disease condition sub-
ject. In addition, the whole brain connectivity for 91 ROIs was carried out and the values are
presented as mean and standard error in Table 2. The correlation maps were obtained and the
graphical display of the ROI-to-ROI connectivity values for the between-subjects and between-
condition contrasts were computed in the second-level analysis. Details of the seven parameters
computed using graph theory28 are as follows: global efficiency is the average of the inverse of
the path length for all nodes. Local efficiency is the average global efficiency of subgraphs for
each node containing the neighbors of that node. The degree is the simple measurement for the
connectivity of a node with the rest of the nodes in a network. Average path length is the shortest
path length between the nodes, which measures the network’s capacity of transferring the infor-
mation between the nodes. The measure betweenness centrality is a quantity of centrality in a
graph based on the shortest path. Cost is the ratio of the existing number of edges to the number
of all possible edges in the network. Clustering coefficients are the number of connections
between the nearest neighbors of a node proportional to the maximum number of connections,
whereas the mean of the clustering coefficients over all nodes is defined as the global clustering
coefficient.37

Table 2 Functional assessment at regions associated with DMNs [graph theory parameters
(mean ±SE)].

Graph theory parameters CN (N ¼ 20) EMCI (N ¼ 20) LMCI (N ¼ 20) AD (N ¼ 20)

Global efficiency 0.554� 0.001 0.500� 0.005* 0.509� 0.003* 0.499� 0.004*

Local efficiency 0.394� 0.008 0.723� 0.005* 0.729� 0.004* 0.724� 0.003*

Betweenness centrality 0.004� 0.00 0.007� 0.00* 0.007� 0.00* 0.008� 0.00*

Cost 0.150� 0.00 0.150� 0.00 0.150� 0.00 0.150� 0.00

Average path length 1.970� 0.005 2.308� 0.028* 2.242� 0.017* 2.321� 0.028*

Clustering coefficient 0.172� 0.004 0.515� 0.009* 0.511� 0.007* 0.517� 0.006*

Degree 24.45� 0.000 24.45� 0.000 24.45� 0.000 24.45� 0.000

*Represents significant reduction (p < 0.05) in the mean volume as compared to CN determined by
post-hoc test.
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4 Statistical Analysis

Statistical analysis was performed using Statistical Package for the Social Sciences Version 21
and the structural and functional parameters are expressed as mean and standard deviation.
Computed structural volume of the ROIs and the functional metrics were subjected to analysis
of variance (ANOVA) followed by Bonferroni post-hoc analysis. For intergroup comparison,
Bonferroni adjusted p-values were used. Receiver operating characteristic curves were com-
puted for CN and AD, and p < 0.05 was considered as statistically significant.

5 Results

The segmented anatomical regions color-coded and superimposed on the axial, sagittal, and
coronal T1-weighted image sections are presented in Fig. 1. Mean values of structural atrophy
measures were compared between the study cohorts using ANOVA and post-hoc (Bonferroni)
tests and the p < 0.05was considered statistically significant (Tables 2 and 3). The structural and

Fig. 1 Segmented color-coded ROIs.

Table 3 Morphometric assessment of volume in the selected ROIs.

ROIs

Volume (mm3) (mean� SE)

CN (N ¼ 20) EMCI (N ¼ 20) LMCI (N ¼ 20) AD (N ¼ 20)

Hippocampus 3573.6� 76.2 2817.8� 257.8* 2848.0� 238* 2456.0� 217.8*

Thalamus 7001.8� 146.9 5696.3� 516.3* 6331.8� 402.4 5235.2� 488.4*

Amygdala 1205.9� 78.9 956.3� 96.5 1010.1� 69.8 878.8� 70.1

Putamen 4395.3� 116.9 3411.6� 334* 3765.8� 349.1 3031.9� 345.4*

Pallidum 1654.8� 67.3 1379.5� 134.5 1548.1� 133.1 1190.4� 119.1

Caudate 3366.8� 101.9 2701.4� 238.9* 2889.6� 255 2380.0� 269.6*

Accumbens 315.9� 19.9 302.1� 33.1 294.1� 32.6 276.3� 29.7

*Represents significant reduction (p < 0.05) in the mean volume as compared to CN determined by
post-hoc test.
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Fig. 2 Box plots of the structural parameters.

Fig. 3 Box plots of the functional parameters.
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functional parameters are represented as box plots (Figs. 2 and 3). The Pearson’s correlation
coefficient between the MMSE score and the structural and functional metrics are given in
Table 4. The values of the area under the curve (AUC) are given in Table 5.

Functional connectivity with nodes and edges are presented in Fig. 4. The blue nodes with
red edges represent the positive connectivity within the ROIs, whereas, the red nodes with blue
edges represent the negative connectivity.

The functional connectograms for the study cohorts are displayed in Fig. 5. Functional mea-
sures, such as global, local efficiency, between centrality, path length, cluster coefficient, cost,
and degree were assessed. The receiver operating characteristic curve (ROC) analysis (Fig. 6)
was drawn for functional and structural atrophy changes, and the AUC with 95% confidence
interval is presented in Table 5.

Table 4 Pearson’s correlation coefficients of extracted imaging parameters with MMSE score.

ROIs for atrophy measure

Correlation to
MMSE

Functional measures

Correlation to
MMSE

r p r p

Hippocampus 0.284 0.011 Global efficiency 0.342 0.002

Thalamus 0.303 0.006 Local efficiency −0.352 0.001

Amygdala 0.221 0.049 Betweenness centrality −0.364 0.001

Putamen 0.268 0.016 Cost —* —*

Pallidum 0.211 0.267 Average path length 0.336 0.002

Caudate 0.267 0.016 Clustering coefficient −0.367 0.001

Accumbens 0.112 0.322 Degree —* —*

*Could not compute as the parameter is a constant.

Table 5 Receiver operating characteristic curve analysis.

Test result variable(s) AUC

95% confidence interval

P-valueLower bound Upper bound

Average path length 0.890 0.793 0.986 0.000

Betweenness centrality 0.619 0.482 0.755 0.114

Clustering coefficient 1.000 1.000 1.000 0.000

Local efficiency 0.881 0.778 0.983 0.000

Hippocampus 0.672 0.525 0.819 0.022

Thalamus 0.661 0.522 0.800 0.032

Amygdala 0.670 0.548 0.791 0.024

Putamen 0.665 0.531 0.799 0.028

Pallidum 0.664 0.529 0.800 0.029

Caudate 0.690 0.564 0.815 0.011

Accumbens 0.578 0.433 0.722 0.301

Bold values represent p < 0.05.
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6 Discussions

This study presents structural atrophy and functional connectivity measures in ADNI partici-
pants using MPRAGE T1-weighted and rs-fMRIs. Brain morphological variations, such as vol-
ume, thickness, and surface area, have been applied as a measure of structural association
between brain regions.38,39 However, it is unclear how morphometric correlations relate to actual
anatomical connectivity between brain regions. In the study cohorts, a decrease in volume in
limbic regions, such as thalamus, hippocampus, in EMCI, LMCI, and AD groups, was observed,
as compared to the controls. However, there was no significant reduction in the volumes in
amygdala, pallidum, and accumbens. Previous studies have reported atrophy changes in

Fig. 4 Graph analysis—nodes and functional connections [ROI–ROI intrinsic functional connec-
tivity (left—positive connectivity; right—negative connectivity)]. Red dots represent the nodes in
each anatomic hemisphere; lines represent possible functional connections between those
ROIs.

Fig. 5 Functional connectograms with positive (red) connectivity and negative (blue) connectivity.
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ROI, such as amygdala40 and hippocampus,41–46 putamen and thalamus,41 and putamen, pal-
lidum, and accumbens.40,41 These studies have postulated that atrophy or atrophy rate47,48 can
serve as a strong predictive marker in demonstrating the progression of AD. However, a few
other studies have reported that morphometric variations are not specifically related to
AD.49,50 In another study, hippocampal atrophy, when correlated to MMSE yielded an r value
of 0.21, a small positive correlation.49 Clinical scoring methods are often subjective and depen-
dent on clinical judgments and may not be fully adequate to recognize disease progression when
used without any objective adjunct tools such as biochemical and imaging markers.50,51 Hence
the functional objective biomarkers may facilitate an early as well as precise diagnosis of AD and
complement the clinical criteria.

The pathophysiological effect of AD has been seen in the DMN regions, such as posterior
cingulate cortex, lateral parietal cortex, and retrosplenial cortex in older patients with AD, asso-
ciated with atrophy change (reduction in the volume) and metabolic abnormalities.52 In this
study, functional connectivity analysis revealed a positive connectivity in AD as compared
to CN. A similar finding has reported an increased functional connectivity at rest in left middle
frontal gyrus in mild AD group.53 Nevertheless, a decreased connectivity in the regions of thala-
mus and in the caudate has also been observed.54 An increased connectivity in the DMNs was
due to the deactivated structures in these networks.55 Increased functional connectivity in the
DMNs may also be due to a high level of amyloid deposition in AD leading to increased meta-
bolic functioning in these regions.56 The increased connectedness in AD may be interpreted as
compensatory reallocation of cognitive possessions. These findings are in par with the earlier
studies, which have reported higher DMN connectivity in AD.57–60 The posterior part of the
DMN exhibited hyperconnectivity leading to the disturbance or dysfunction of switching from
the rest to task condition.61,62

Several studies have revealed that the change in the DMNs was accompanied with both the
discrepancies and consistencies in MCI due to the clinical aspects of heterogeneity or by the
methodological differences.63 Theoretically, combining various MRI modalities, such as gray
matter structure and functional connectivity measures, may produce more accurate classification
than a single modality. A multimodal approach could provide complimentary information about
different aspects of the disease. Our study revealed an increased classifying efficacy of functional
measures, as compared to atrophy changes. Functional graph theory measures significantly
classified disease condition (EMCI, LMCI, and AD), as compared to CN healthy controls.
The functional connectivity graph theory method used in this study had specificity and sensi-
tivity of 100% in classifying CN and AD. None of the AD was classified as CN and vice versa.
This is a key feature of this functional assessment since classifying patients as healthy subject is a
critical constraint in clinical applications.

7 Conclusion

There is continuous progress in the development of different methods and techniques to
analyze the rs-fMRI data. Attempts to develop new processing techniques may be helpful in
understanding the common or conflicting conclusions reported in the rs-fMRI literature.64

Fig. 6 ROC curves for (a) structural and (b) functional measures.

Subramanian et al.: Study on structural atrophy changes and functional connectivity measures. . .

Journal of Medical Imaging 016002-9 Jan∕Feb 2020 • Vol. 7(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 26 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



In this work, the functional connectivity analysis using rs-fMRI offers greater sensitivity com-
pared to conventional MRI-based atrophy measures to evaluate cognitive decline. In this study,
we have observed structural atrophy in hippocampus, thalamus, amygdala, putamen, pallidum,
and caudate in AD patients, in conformity with earlier studies. The rs-fMRI analysis showed an
altered functional connectivity in EMCI, LMCI, and AD, as compared to CN. In this study, an
increased functional connectivity in AD cohort is noted, which may be either due to compensa-
tional response or due to increased metabolic activity of amyloid plaques in AD. ROC analysis of
the functional assessments gave improved predictive insight when compared to morphometric
analysis, and thus establishes its utility as early predictor for clinical staging in cognitively
impaired and AD patients. Increased number of study participants as well longitudinal studies
may further validate these findings.
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